Gases and plasmas – introduction
We live in a gaseous atmosphere and are influenced by its composition, behaviour and structure. Use is made of gas properties in our everyday lives – from perfumes and aftershaves to carbonated drinks to baking the perfect sponge cake to pumping up car/bicycle tyres.
Plasma ball
Electrical stimulation of the gases in the globe converts them to fingers of plasma. The plasma emits light of various colours dependent upon the identity of the gases present.
When this state of matter is subjected to heat or electrical stimulation, it can transform into the fourth state of matter known as plasma. Natural atmospheric events such as lightning and auroras have a captivating and at times frightening quality. They are demonstrations of some of the properties of plasmas. Plasmas comprise the majority of the universe, and in terms of our atmosphere, some physicists have likened it to “living in a bubble of unionised gas surrounded by a plasma”.
Gases and plasmas are all around us, and we can better understand their properties and uses by investigating them in more detail.
States of matter
Matter is anything that occupies space and has mass. All physical objects are composed of matter, and an easily observed property of matter is its state or phase. The classical states of matter are solid, liquid and gas. Several other states, including plasma and Bose-Einstein condensate, do exist, but it is the classical states that can transition directly into any of the other classical states. Find out more in the article Matter in our world.
States of matter concept map
States of matter concept map showing the classical states along with two other states known as plasma and Bose-Einstein condensate. As students construct concept maps, they make sense of the ideas and the relationships between them
The gaseous state
The gaseous state is truly chaotic on the molecular level. It is the rapid, random motion of the spaced out gaseous particles that supports this description. This kinetic-molecular model helps to explain some of the properties of gases.
Latent heat
Converting states of matter from one form into another requires the involvement of heat energy. This hidden heat (so called because, as the change occurs, there is no change in temperature) is referred to as latent heat. Find out more in the article Hidden heat.
The plasma state
Our daily experience confirms a world made up of solids, liquids and gases. However, at about 80 km above the Earth’s surface, the atmosphere is no longer made up of gas. Instead, it is made up of ionised gas, which consists of a balanced mix of electrons, positive ions and neutral particles. This state is called plasma. Find out more in the article Plasmas explained.
Lightning explained
Lightning is a large-scale natural spark discharge that occurs within the atmosphere or between the atmosphere and the Earth’s surface. On discharge, a highly electrically conductive plasma channel is created within the air, and when current flows within this channel, it rapidly heats the air up to about 25,000°C. The lightning channel is an example of terrestrial plasma in action.
Nuclear fusion
Within the Sun’s plasma core, nuclear fusion reactions occur, releasing huge amounts of energy. Attempting to mimic this process on Earth has been the goal of some nuclear physicists for more than half a century. Progress has been slow, and the main reasons for this are linked to making, controlling and containing extremely high-temperature plasma within which hydrogen nuclei can fuse to form heavier helium nuclei. Find out more in the article Plasmas and nuclear fusion.
Inside JET
Inside the doughnut-ring shaped reactor of the JET. It is designed to heat hydrogen gas to a high-temperature plasma state. Control of the plasma is achieved with large magnetic fields.
Meet the scientists
Otago University’s Associate Professor Craig Rodger is regarded as New Zealand’s lightning expert. He was a major player in setting up the worldwide lightning location network (WWLLN), and his research interests include upper-atmosphere transient luminous events as well as coronal mass ejections from the Sun.
Dr Eric Scharpf is a partner in safety and automation consultancy firm exida and is widely recognised as an expert in chemical process safety, efficiency analysis and optimisation. He also works part-time in the Energy Studies section of the Physics Department at the University of Otago. One of his recent research areas has dealt with heat pump efficiencies used in the timber industry. Learn more about how heat pumps function in the article Heat pumps and energy transfer.
Associate Professor Bob Lloyd is the Director of the Energy Studies programme at Otago University. With a keen interest in renewable energy and energy conservation, Bob has been following developments in the nuclear fusion projects being run at the JET facility in the UK.
Professor Hyland with Dr Anh Tran
Professor Margaret Hyland discusses the results of a recent plasma spray-coating research project with Research Fellow Dr Anh Tran. The project investigated splat pattern formation in the plasma spray-coating process.
Professor Margaret Hyland is Deputy Dean of the Faculty of Engineering at the University of Auckland. Her area of expertise is in the chemical and materials engineering field. One of her research projects is focused on the use of high-temperature plasmas to assist in the deposition of thin ceramic coatings on metal substrates.
Dr Steven Matthews is a senior lecturer in the School of Engineering and Advanced Technology at Massey University in Auckland. His plasma spray gun research is focused on two main areas – plasma spray-coating magnesium-based medical implants with hydroxyapatite and the plasma spraying of titanium coatings. Learn more about the process in Plasma spray-coating.
Take up the challenge
The student activities about gases and plasmas explore the science concepts: properties of matter and energy forms.
Diffusion and effusion is a practical activity in which students investigate carbon monoxide and hydrogen sulfide. Gas properties is a web-based activity that investigates gas compressibility and gas expansion. Atmospheric pressure measures forces – using a drink bottle, ping pong ball and soft drink can. Students estimate the latent heat of vaporisation of water – while learning about the hazards of steam! Students also learn how to measure relative humidity and temperature and relate these to thermal comfort levels.
The following activities are designed to enhance students' science capabilities:
Using evidence – heat and change of state supports students to use information from annotated diagrams to explain scientific observations.
Interpreting representations – heat pump cycle uses diagrams to develop an explanation of how a heat pump works.
Viewing and monitoring lightning allows students to engage with science in a 'real life' context.
Key terms
For explanations of key concepts, see Gases and plasmas – key terms.
Timeline
Explore the timeline to look at some historical aspects in the development of our understanding of gases and plasmas.